
J .  Fluid Me&. (1975), vol. 72, part 2, pp. 289-303 

Printed in Great Britain 
289 

The swimming of flexible slender bodies in waves 

By R. COENE 
Department of Aeronautical Engineering, Delft University of 

Technology, The Netherlands 

(Received 17 March 1975) 

In  this paper slender-body theory is applied to flexible bodies. The bodies are 
assumed to have a constant forward velocity normal to the crests of a regular 
train of two-dimensional waves and to move at  a nearly constant depth. A 
flexible recoil mode is defined which is the dynamic counterpart of the stretched 
straight fish position defined by Lighthill (1960) for uniform flow conditions. 
Expressions are derived for the mean thrust and for the mean rate of working, 
and permit the evaluation of conditions for efficient propulsion. By properly 
adapting the motions of the body to  the oncoming waves, energy can be extracted 
from the waves in such a way that it can be used for propulsion. This phenomenon 
may help to explain the high speeds that cetacea are observed to sustain over 
long periods of time. 

1. Introduction 
Lighthill (1960) worked out a theory for the swimming of a slender fish 

through water at  rest, i.e. in uniform flow conditions. Several refinements and 
extensions have been made since that time. Lighthill’s original formulation, 
however, appears to be well suited as a starting point for the statement of the 
swimming problem in waves. In  this paper an attempt is made to get some 
insight into the adaptation of swimming movements to an oncoming regular 
train of waves. Head seas as well as following seas with the crests of the waves 
perpendicular to the direction of motion of the body are included. The case 
where the following sea has the same velocity as the body will not be discussed 
here. This caw is andogous to the case of bow-wave riding treated by Focke 
(1965). 

The boundary-value problems that will arise for the velocity potential of the 
flow field outside the boundary layer can be cast in a form which is formally 
equivalent to that of problems arising in the uniform flow case. In the evaluation 
of the forces exerted on the body, the rate of working by the body and the 
energy extracted from the waves, however, some new features will appear. 
In particular, the effects of the adaptation on the efficiency of the propulsion 
are discussed. The propulsive force is assumed to balance, in the mean, the 
viscous drag and the wave drag. The fluctuations in the resultant of these forces 
are assumed to be such that the forward speed of the body can be treated as a 
constant. The slender bodies discussed in this paper are assumed to exhibit left- 
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right symmetry with the lateral displacements parallel to t,he plane of symmetry, 
which is typical of cetacea. The fact that their fins and tails are not slender in 
the sense used in this paper is not expected to affect severely the more quali- 
tative conclusions related to  their propulsive efficiency in the non-uniform flows 
that occur near a wavy sea surface. 

2. The velocity field 
The Cartesian co-ordinate system (x, y, x )  performs a steady translation with 

the body in the -x direction at velocity U .  The plane z = 0 is at  a constant 
depth d below the calm free surface of the water. The free surface is disturbed by 
a regular train of two-dimensional waves of wavelength A, height u and phase 
velocity U + c with respect to the (x, y, x )  system in the + x direction; c is positive 
in a head sea and negative in a following sea. 

The velocity potential for these waves is given by 

q5w(x, z, t )  = ac exp [2nh-l(z - d) ]  cos ( 2 7 ~ A - ~ [ x  - (U + c) t]), 

u exp [27r( - d) /h]  = a*. 

(2.1) 

while the amplitude of the waves at the swimming depth d is given by 

(2.2) 

To formulate the boundary conditions at  the body surface we follow Lighthill 
(1960). The body is considered to be 'stretched straight' when, in uniform flow 
and without free-surface effects, no resultant normal force acts on any cross- 
section. The velocity potential in this case is expressed as 

ux + Q'o(x, Y, 2 ) .  (2.3) 

We suppose that the cross-sections of the body perform displacements h(x, t )  in 
the z direction without altering their shapes. y = 0 is a plane of symmetry. If 
the stretched straight body is given by F(x ,  y, z )  = 0,  the moving body is given 
by F ( X ,  Y ,  2) = 0 after introduction of the co-ordinates ( X ,  Y ,  2, T ) ,  where 

X = X, Y = y, T = t ,  Z = ~ - h ( x , t ) .  (2.4) 

In  these co-ordinates the velocity potential <p satisfies the transformed Laplace 
equation and can be decomposed as follows : 

@ ( X ,  Y ,  2,T) = U X  + Qo(X,  Y ,  2) + @,(X,  Y ,  2, T )  
+ Q w ( X ,  2, T) + QJX, Y ,  Z, T). (2.5) 

In (2.5) the function <Po is the same function as in (2.3). Q1 is the perturbation 
potential due to the displacements h of the body in the absence of waves. (Dw 
is the potential of the oncoming waves, which follows from (2.1) with (2.4): 

9w(x, 2 ,  t )  = QW(X, 2, TI. (2.6) 

(D2 is the perturbation potential due to the waves around the constrained body 
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FIGURE 1 

(h  = 0). Corrections related to the presence of the free surface have not been made. 
The boundary condition a t  the body surface is obtained by putting 

D(P(X9 y ,  z)}/m 
the derivative following a particle of water, equal to zero: 

+-- --- - 0. (2.7) aa ,  a~ + aa, aF aa, ah aa,) ( a~ ah - - - - - - -- ax axaz ax axaz a ~ a ~  azaz 

For a slender body BF/aX is small compared with aF/aY and 8Fla.Z. Deriva- 
tives of Q0, @,, 0, and Q8 with respect to X ,  Y and Z are small compared with 
U .  Moreover ah/aX is assumed to be small while ahl8T is assumed to be small 
with respect to U .  Omitting products of small quantities one finds as the boundary 
condition for (Do 

and with $ = (Dl + one has for $ 

= 0 at P(X ,  Y , Z )  = 0. (2.9) a@aF (a$ ah + -+---- aYaY az az a~ 
From (2.1) and (2.2) one finds, using (2.4), 

aOw/aZ = exp { 2 ~ h - ~ [ Z  -+ h(X,  T)]}, (2.10) 

(2.11) with @& = a* cos {27rA-l[X - (U + c) TI} 

and a* = uc-eexp 2n (A 2n ( -a ) )  = u*(T). 2nc h 
(2.12) 

Thus, if we assume that the lateral dimensions of the body and the displacements 
19-2 
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are small with respect to the wavelength A also, we can write as the boundary 
condition for q? 

where 

at P ( X , Y , Z ) = O ,  

ah ah 
aT ax w * = - + u -  -@.&=W-a&. 

(2.13) 

(2.14) 

For each X ,  y? is the potential of the two-dimensional flow in the Y , Z  plane 
resulting from the movement of an infinite cylinder C, with cross-section S ( X )  
with a velocity w* in the 2 direction through an unbounded water mass. Then, 
with qw, y ,  8, T) = W*(X, T )  $( y ,  z; X ) ,  (2.15) 

Q satisfies az$/a y2 + a 2 $ / a z 2  = 0, (2.16) 

and the boundary condition Q --f 0 a t  infinity. 

3. The hydrodynamic forces on the body 
The hydrostatic lift forces are assumed to balance the weight of a slice of the 

body between any two vertical cross-sections, so that these terms can be omitted 
from the equations. The wavelength A and the body length 1 are assumed to be 
of the same order of magnitude. The dimensions of the body in the Y and Z 
directions, the displacements h and the amplitude of the waves are assumed to 
be small with respect to the body length I, say of order €1, where 6 is a small 
parameter. The derivatives of Qo, Ql and Q2 with respect to Y and 2 as well as 
aQ,,/aX and aQ,/aZ are taken to be of order eU.  The derivatives of Q0, Ol and 
Q2 with respect to X are of order Ue2 log E .  Then, by retaining terms up to and 
including those of orders e2 U 2  and e2 U2  log E ,  one finds from Bernoulli’s equation 

P = PO+PI+PZ+P3, (3.1) 

with the following decomposition: 

p ,  = constant -pU 

We first calculate the lift force L ( X ,  T )  per unit length. Owing to the symmetry 
with respect to the plane y = 0,  this lift force acts in the plane y = 0 and intro- 
duces no torsional moments. The part p o  is the pressure distribution associated 
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with the stretched straight position and, by definition, does not contribute to 
the lift force. The first term of p1 leads to a contribution of order e3 to L ( X ,  T) : 

Defining A ( X )  by (3.4) 

where p A ( X )  is the virtual mass per unit length of a cylinder C, moving in the 
2 direction and 4 is defined by (2.15), the contribution L, can be expressed as 

(3.5) L1 = -p(a/aT + Ua/aX) {w*A(X)). 

The second contribution of order €3 to the lift follows from the first term of p 2 :  

With OW@, 8, T )  = <D,(X, 0, T )  + 8 0 W z ( X ,  0, T )  + . . ., one finds, to order e3, 

L2 = p S ( X )  (a/aT + Ua/aX) (3.7) 

where S ( X )  is the area of the cross-section. The remaining terms in (3.2) contri- 
bute to higher-order terms in the lift only. Combining (3.5) and (3.7) we thus 
obtain for the lift, to order 8, 

Without waves, L(X, T )  is independent of the area S ( X )  of the cross-section 
and (3.8) reduces to Lighthill’s (1960) result. It may be noted that, as Lighthill 
(1960) showed, the error in (3.8) in the case of uniform flow is only of order e5. 
The error in the terms of (3.8) due to the presence of the waves is of order e4. 
Changing the order of the differentiations in the second term on the right-hand 
side of (3.8) shows that this term results from the vertical component of the 
pressure gradient due to the waves. 

The displacements of an unconstrained body cannot be chosen arbitrarily. 
First, the time rate of change of the momentum of the body in the z direction 
must be equal to the resultant of the lift forces. Second, the time rate of change 
of the angular momentum of the body about the y axis must be equal to the 
moment of the lift forces about that axis: 

These equations will be discussed in some detail in the next section. 
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The mean t,hrust T is evaluated in the appendix. The result, to order e4, is 

It should be observed that the case U + c = 0 has been excluded in the derivation 
of (3.10). Both h(x,t) and q5w have been assumed to be oscillatory. At the nose 
of the body we put S(0)  = A(0)  = 0. At the tail we assume #(I) = 0 but A(Z) + 0. 
Then p can be expressed as 

Without waves ($$, = 0) the mean thrust is determined by the movements of 
the tail only, as in Lighthill's (1960) result. 

It may be observed here that for a constrained rigid body 
- 
T = +@(I) {($&)'- U2(ah/ih)t=i}. (3.12) 

Those who are familiar with slender-wing theory will recognize the second term 
on the right-hand side of (3.12) as the vortex drag of a span loading of elliptic 
form. 

The mean rate of working by the body is given by 

(3.13) 

Using (3.8) with, again, S(0) = A(0) = 0, S(2) = 0 and A(Z) $- 0 one has 

As usual, the quality of the propulsion is measured by the quantity 

?(l = T U l W .  (3.15) 

A swimming problem may now be formulated as follows: find physiologically 
plausible solutions h(x, t )  of the equations of motion (3.9) giving a positive and 
sufficiently large at  a given U a t  high 7. In a calm sea without waves, 7 cannot 
exceed unity and to generate a positive F the rate of working f;ir must be positive. 
In  the presence of waves 7 may exceed unity and is not necessarily positive 
when F is positive. Before discussing these aspects in more detail we return to 
the equations of motion (3.9). 
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4. The flexible recoil mode 
An interesting particular solution &(x, t )  of the equations of motion is obtained 

by equating the local time rate of change of the lateral momentum of the body 
and the local lateral force exerted on the body by the time-varying part of the 
pressure of the water: 

It can be shown that, if q5& is given by 

one obtains 

PS(X)  a 2 K i a t a  = E(x,  t ) .  (4.1) 

q5& = a* cos (27rA-l[x - (U + c) t ] ) ,  (4.2) 

K(x, t )  = El(%) cos (27rxlh- wt)  + K,(x) sin ( 2 n x / ~ -  w t ) ,  (4-3) 

where 4277 = (U+Cl/A (4.4) 

is the frequency of encounter. The functions &(x) and h,(x) are given in the 
appendix. 

This flexible recoil mode may be considered as the dynamic counterpart of 
the stretched straight position (k = 0) in uniform flow. The local mean rate of 
working is equal to zero, 

- -&x, aii t )  = -pS(x) 4- a (83” - = 0, 
at at at (4.5) 

and it is clear that the work done by the body as a whole is also equal to zero. 
Therefore this easy-going motion would appear to be a natural point of departure 
for an animal trying to minimize effort. In order to gain some further insight into 
the flexible recoil mode we consider some special cases. 

(i) Putting S = 0 and A $. 0 leads to 

- a* ill = 0, K, = - = a”. 
2 n c p  

From (4.2) and (4.3) one finds for this case 

iz = aKpt + uaiiiax = #&, (4.7) 

which implies that there is no cross-flow. It follows, moreover, that the tail of 
a body which is characterized by S < A and 8-t 0 for x - f  I will tend to follow 
the oncoming flow smoothly. 

(ii) Consider a body which satisfies the following symmetry relations: 

S(X) = 8(Z-2), A(x) = A(I-x).  (4.8) 

It may be observed that a body which is symmetric with respect to the midship 
position x = 41 satisfies (4.8). Using (4.8) one obtains from (A 9) (see appendix) 

K,(x) = --Z1(Z--%), K,(x) = K2(Z-x). (4.9) 
By putting 

2nx 

d 

ah a K  
G(x,t) = 5 + Uz = El(x)cos + G , ( x ) s i n ( ~  - w t ) ,  (4.10) 

one obtains, using (4.3) and (4.9), 

G,(x) = E1(Z-x), E,(x) = -@,(Z-x). (4.11) 
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If, in addition to (4.8), one assumes S(0) = S(1) = A(0) = A(1) = 0, it follows 
from (3.11) that the mean thrust is equal to zero. Furthermore, it  may be 
noticed that for a body with A M X which near the nose is characterized by 
A = xn (n > 0) and at  the afterbody by A = ( I  - x)" (n > 0) one finds from (A 9) 
that El(%) + 0 and &(z) + a* for both x+ 0 and x+ 1. The nose, as well as the 
afterbody, tends to follow the oncoming flow smoothly and the cross-flow G* 
tends to zero both as x+ 0 and as x-+ 1. It is clear that to  such a body one may 
attach an inoperative thin tail without affecting the flexible recoil mode of the 
bodj7. In  view of possible extensions of the present formulation it is interesting 
to not,e that such an inoperative thin tail need not be slander in the sense used 
here. At present, however, it is more appropriate to remain within the scope of 
the slender-body formulation, and we propose to discuss swimming motions of 
a slender body which can be characterized as follows: 

(4.12) 

A M S except at  the tail, where A 8, 

A(x)  = A(1-x) except near x = O,Z, A(0)  = 0, A(I) += 0. 

S(x)  = S(E-x), S(0) = 0, X(Z) = 0, 

5. The adaptation of the swimming movements to the oncoming waves 

decomposed as follows: 
(5.1) 

where &(z, t )  is the flexible recoil mode and f (x, t )  is a solution of the homogeneous 
part of (3.9), which is obtained by putting $& = 0, as in uniform oncoming flow. 

The swimming problem can now be stated as the problem of adapting the 
voluntary and active displacements .f to the passive displacements E .  On the 
assumption that the situation at the tail dominates the generation of thrust it 
is natural to start with the evaluation of the first terms in (3 .11)  and (3.14). For 
a body of the type (4.i2), with #(I) = 0 and A(I) += 0, one has at  x = 1 

The displacements h(x, t )  satisfying the equations of motion (3.9) can be 

fL(x, t )  = f (x, t )  + K(x, t ) ,  

aEpt  + u a K p x  = $&, 

and one finds upon substitution of (5.1) into these terms 

In the flexible recoil mode the vertical displacements & are oscillations with the 
frequency of encounter (4.4). If the voluntary displacements f were characterized 
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by a different frequency, the mean of the cross-terms involving both h and f 
would vanish. There would be no correlation and the interference drag or thrust 
as well as the contribution of these cross-terms to would be equal to zero. 
No benefit could be obtained from the waves and the swimming problem would 
be essentially the same as in uniform flow conditions. 

From (5.2) and (5.3) one obtains 
-- w- Tu w *pA(l) U[W*2+ 2w*q5&],=I, 

w- Fu M &pA(l) U[w2 -e]z4. 

(5.5a) 

(5 .5b)  

Without waves one has w = wx and the right-hand sides of (5.5) can be inter- 
preted as the mean rate of shedding of kinetic energy into the wake. It is clear 
from ( 5 . 5 ~ )  that the mean rate of wasting energy can be reduced by correlating 
w* and $& negatively at  x = 1. Moreover, the terms in brackets have a minimum 
value of - q5:: for 

which can also be expressed as 

or alternatively 

- 
w* = -$zz at x = 1, ( 5 . 6 4  

w = O  a t  x = l .  ( 5 . 6 b )  

For motions of the tail satisfying (5.6) the resultant cross-flow w* a t  the tail is 
exactly minus the local vertical component of the orbital velocity of the surround- 
ing water particles due to the waves. The vertical component of the velocity of 
the water has vanished just above and just below the tail. The maximum mean 
rate at which the body can extract energy from the waves is estimated as minus 
the right-hand sides of (5.5) after substitution of (5.6): 

(aE/at),,, M F*u, 
where T* is a reference thrust defined by 

From the volume which is effectively being swept by the tail over long periods 
of time, approximately half of the kinetic energy present due to the waves can 
be extracted and made available for propulsion. 

Prom (5.5) and (5.7) it follows that the mean rate a t  which energy is being 
‘wasted ’ can be estimated as 

It should be observed that, in this ‘waste ’, the difference between the maximum 
mean rate at which energy could be extracted from the waves and the mean 
rate at which it is actually being extracted has been included. This is evident in 
the power balance: 

W + (aE/at),,, = FU +waste. (5.10) 

In  order to discuss the swimming problem in more detail it is convenient to 
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modify our notation. After an appropriate shift of the origin of the time axis 

Assuming that the voluntary motions of the tail are perfectly correlated with 
the waves one may write 

(5.12) [af/at~,=~ = y COS wt, 

Substitution of (5.11) and (5.12) into (5.2)-(5.4) yields 

[u af/aX],,, = GCOS ot. 

2i = ~~A(E)( (y+S)(y-6-2P)) ,  ( 5 . 1 3 ~ )  

rv = &pA(l) U{(y  + 6) (a + y)}, (5.13 b)  

and with y+6 $: 0, r 3 4(y-6-2P)/(a+y). (5.13 c) 

Adopting (5.6), tentatively, as a condition to  be satisfied by the voluntary 
motions of the tail leads to 

y+6= -a*. (5.14) 

Using (5.14) and introducing a parameter Y defined by 

gives 

6 = (U/C + &Y) a* 

y =  -(l+U/c+*v)a*. 

(5.15) 

(5.16) 

Using (5.8) then makes it possible to write 

Tz5 F * ( l + v ) ,  w s  vT*u, 7s l + l / v .  (5.17) 

The mean rate at which the body does work is proportional to v while an increase 
in vis accompanied by an increase in the mean thrust. Whenever F* is insufficient 
to sustain a speed U the body must do work and v must be positive. 

In  order to describe the movements of the tail it is helpful to introduce two 
co-ordinate systems. 

(i) The system (xl, yl, zl, tl), where 

x1 = x - Ut, 

(ii) The system (x2, y2, z2, tz ) ,  where 

y1 = y, z1 = 2 ,  t ,  = t ,  (5.18) 

which is fixed to the water at rest far from the surface. 

x2 = x - ( U + c ) t ,  y2 = y, 2 2  = 2, t ,  = t ,  (5.19) 

which moves steadily with the waves. 
In  the x, z plane the path of the tail is a vertical line at x = 1. In the extraction 

modes satisfying (5.15) and (5.16) this path is symmetrical with respect to z = 0. 
The displacement of the tail is given by 

(5.20) 
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Surface streamline 

x,-1 

FIGURE 2. The paths of the tail in the q, z, plane in the extraction modes. 

In  the xl, z1 plane the path of the tail is given by 

(5.21) 

The ‘ wavelength’ of this path is 

p = hU/IU+c l .  (5.22) 

Moreover it follows from (5.6b) that in the xl,xl plane the tail is tangential to 
its path. In  the x2, x2 plane the path of tail becomes 

va+ c 
2 -  2 u+c 2 --- sin (F (x2 - 1)) . (5.23) 

The ‘wavelength’ of this path is A. 

depth one obtains a streamline 
In the x2, z2 plane the waves induce a steady flow field and at  the swimming 

Z2 = - a* sin [ Z ~ h - ~ ( x ,  - I ) ] .  (5.24) 

Comparison of (5.23) and (5.24) reveals that the path of the tail in the x2,z2 
plane can be obtained from the streamlines due to the waves by a simple multi- 
plication : 

(5.25) 

In  the special case v = 0, the path of the tail is a straight line and the slope of 
the tail is equal to  zero. In the special case z2 = Z2, the path of the tail coincides 
with the streamlines (5.24) but, in contrast to the situation in the flexible recoil 
mode, the tail is not tangential to its path in the x2,zz plane. For v* < a/a* the 
tail comes closest to the surface of the water at  the troughs of the waves, For 
v* > a/.* this happens a t  the crests of the waves. 

The voluntary movements of the tail in the extraction modes are given by 

[af/at],=, = a*( U / c  + +v) COB ot, \ (5.26) 

[a f  and [Vaf/ax],=, are correlated negatively for &v > - U/c and for 
Qv < - 1 - U/c.  In  contrast to the situation in uniform flow conditions, there 
are cases with positive correlations, for - U / c -  1 < &v < - U/c,  where the 

cu af/a.~,~ = - a*( 1 + u/c + gv) COS ot. I 
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propulsion may be satisfactory. Lighthill (1960, 1970) showed that in uniform 
flow conditions the functionf(x, t )  can take the form of a wave passing down the 
body at  a phase velocity somewhat larger than U .  If such an f (x, t )  does not 
satisfy the homogeneous part of the equations of motion (3.9) it is necessary to 
add some terms, e.g. a ‘rigid recoil’ displacement, in order to obtain a homo- 
geneous solution. In  the present, non-uniform casef(x, t )  should be characterized 
by the frequency of encounter. The movements of the tail required in the ex- 
t,raction modes can be brought about by, say, 

2n 2n 
k f (2, t )  = g(x) cos- {x- (U  + v )  t ]  + (gl +g,z) s i n x  (U + V) t 

with the correlation condition 

(U+vl/lC= IU+Cl/A, (5.28) 

where g(x)  is the amplitude of a wave with wavelength k passing along the body 
at a phase velocity U + v. It is clear from (5.28) that the first term on the right- 
hand side of (5.27) is not necessarily a wave passing down the body and one may 
construct superpositions for different values of k and w. 

It may not always be possible for a swimming body to realize motions of the 
tail of the type (5.26) and at the same time obtain sufficient thrust in the extrac- 
tion modes. Obviously v cannot become too large. It is clear from (5.26) that, 
in a following sea, this restriction on v is less severe than in a head sea. Whenever 
v cannot be made large enough to obtain sufficient thrust by (5.17), a compromise 
must be found. 

One may accept motions which satisfy (5.14) only approximately but which 
remain characterized by the frequency of encounter. On the other hand part of 
the thrust may be obtained from a component f, off which is not characterized 
by the frequency of encounter. Writing f, for the part off which is correlated 
with the waves one has f = fc +fu. (5.29) 

One then obtains T =  FC+TU, v = q+vu, 
and with qc = Tc U / q  and vu = Tu U p u ,  one may put 

(5.30) 

(5.31) 

Typical values of 7, are, as in uniform flow conditions, somewhat smaller than 
unity, say 0.8, but 7, is larger than unity and can be much larger. It is clear that 
7 can be made to satisfy 

11% 6 7 r e .  (5.32) 

The expressions derived in this section permit a numerical evaluation of the 
propulsion of a slender body swimming in waves. For given movements of the 
tail, such as those associated with the extraction modes, these calculations are 
straightforward. The problem of the construction of functions describing the 
displacements of the body as a whole which bring about such favourable motions 
of the tail has no unique solution. One is free to select ‘physiologically plausible’ 
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solutions of the equations of motion. In  numerical evaluations it is desirable t o  
verify whether the integrals in the complete expressions for indeed do 
not affect the propulsion. It is clear that their effect is not necessarily unfavour- 
able. In  cases where these integrals turn out to be significant it may become 
attractive to allow for phase shifts in the movements of the tail. 

It is a pleasure to express my gratitude t o  Prof. dr. ir. J. A. Steketee for his en- 
couragement and support during the investigation described in this paper. 
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Appendix 
The mean thrust 

The thrust T can be expressed as the x component of the resultant of the pressure 
forces at  the body surface : 

where the lift L follows from (3.8) and the pressurep follows from (3.1) and (3.2). 
It remains to evaluate the last integral in (A 1). 

By virtue of d’Alembert’s paradox the part p,, does not contribute to T. 
Excluding the case U + c = 0 and assuming oscillatory h and q5w it is clear that 
the mean of p1 over a long time is equal to zero. In  pz the first term is oscillatory 
while the term - $p(( aq5w/aX)2 + (aq5,/a2)2) does not depend on X .  Therefore the 
contribution from p z  to the mean thrust, to order e4, is given by 

In  p 3  the term amw/% is now replaced by cP& and using (2.14) one obtains, to 
order e4, 

The integral in (A 3)) for a certain value of X ,  is formally equivalent to the 
pressure distribution due to the steady motion of a cylinder C, with constant 
velocity w* in the Z direction through water at  rest. It should be noticed that 
p 3  does not involve time derivatives of the potential. Time plays the role of a 
parameter only. Thus, in order to evaluate (A 3)) the following argument applies. 

The kinetic energy of the water per unit length is g p A ~ * ~  and the momentum 
in the 2 direction is PAW*. A time SX/U later the kinetic energy has changed 
by an amount &p(d(Aw*2)/dX) 6X and the momentum by p(d(Aw*)/dX) 6X .  
In  order to bring about this change in momentum the Z component of the 
force exerted by the body on the water per unit length must do the amount of 
work pw*(d(Aw*)/dX)SX. The amount of work done by the X component of 
the force exerted by the body on the water per unit length is equal to 

- (dT,,/dX) 6X.  
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Equating the amount of work done by the body to the change in kinetic energy 
per unit length leads to 

The JEexible recoil mode 

Upon substitution of (3.8) equations (3.9) can be written in such a way that the 
terms due to the presence of the waves appear on the right-hand sides only: 

1' os% a2hdx+p/: (g + U:) (wA)dx  

The flexible recoil mode is obtained as a particular solution of (A 7) by equating 
the local rate of change of the lateral momentum of the body and the local 
lateral force exerted on the body by the time-varying part of the pressure of the 
water : 

a 2 6  
pS- at2 = x ( x , t )  = - p  (i + U:) ($*A) +pS (; + U t )  #&, (A 8 )  

277 
h #& = a*cos-{x-(U+c)t} Substitution of 

and K(z, t) = il,(x) cos 
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where 427r  = I U + c ]  /Ais the frequency of encounter, into (A 8) and subsequently 
into (A 7) yields 

d A  
dx -s- U2(U+2c)  

El(.) =a* 
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